TECHNOLOGIES FOR LEARNING

Sergey Sosnovsky (presented by Johan Jeuring)
Goals of the Course (1)

Learn about Computer-based technologies for learning

- Adaptation
- Collaboration Support
- New Learning Paradigms
- Formal Theories and Methods
Goals of the Course (2)

- Identify, relate and explain fundamental concepts in the field of computer-based education with a particular focus on adaptive and intelligent technologies.
- Apply these concepts in practice by designing and developing components of adaptive and intelligent educational systems.
- Use relevant literature to analyse existing projects and form an opinion about innovations in the field.
- Investigate a problem within the field of computer-based educational technologies and set up a plan for a group project targeting it.
Goals of the Course (3)

- **Develop analytical reading skills**
 - will have to read about 10 research papers
 - and be prepared to either ask/answer questions about them

- **Develop presentation skills**
 - presenting your paper / topic

- **Develop scientific discussion skills**
 - asking questions
 - answering questions
 - engaging in a discussion
Structure of the course

- **Kick-off meeting (you are at it)**
 - Choose your topic(s) – up to three
 - Report your choice by 11/09/2018 (link on the website)

- **8 topic clusters**
 - **Core lectures (mostly) on Thu:**
 - Before: read a core paper, prepare for a quiz;
 - During: listen and ask questions
 - **Reading sessions on Tue:**
 - Before: if you present a related topic, prepare your presentation
 - During: present your topic, engage in discussion topics of your peers

- **Project**
 - Team-up and pick a topic. Deadline: 13/09
 - Implement, meet weekly with the teacher
 - Present the results. Presentation day: 1/11 (and possibly 6/11)
 - Write a report. Deadline: 6/11

- **Exam**
 - Preparation Session: 6/11
 - Exam: 8/11
Grading

- Quizzes + Presentations + Discussions (20%)
 - Attendance matters!!!
 - If you are not in class = you are not participating
 - Quiz preparation: a core paper and a core lecture
 - Presentation: make an effort presenting a topic (not just a paper)

- Group Project (50%)
 - The list of possible ideas is on the Web-site. Pick your poison
 - Some are implementation-oriented
 - Some are analysis and modeling-oriented
 - Or you can suggest your own (but, discuss with a teacher)
 - Report + code + presentation

- Final Exam (30%)
 - Writing exam verifying your understanding of the core notions learnt in the course
Intelligent Adaptive e-Learning Systems: Main Components

- Instructional Content
- Interaction
- 0..1..1. 0..1..1...
- User Model
- Pedagogical Model
- Adaptation
- Domain Model
- Instructional Content
- Interaction

Image shows a diagram with the main components of an intelligent adaptive e-learning system, including instructional content, interaction, user model, pedagogical model, adaptation, domain model, and instructional content with a tree-like structure.
Student Modeling
What is a Student Model?

• A representation of the computer’s understanding or estimation of the student’s state.
 • What does the student know?
 • How does the student learn?
 • How does the student feel?
 • How can the system engage student in student modeling?
 • How can the system make a good prediction?
Student Modeling Break Down

- Modeling Knowledge
- Modeling Metacognitive State
- Modeling Affective State
- Open Student Modeling
- Modeling Uncertainty
Modeling Knowledge

• What to model?
 • Conceptual knowledge
 • Procedural skills
 • Errors, bugs and misconception

• How to model it?
 • Stereotype models
 • Overlay models
 • Buggy models
Modeling Metacognitive State

- Modeling a learner’s understanding of their own knowledge and skills and helping them to guide their own learning

- Types of Metacognitive Skills, Knowledge, Processes:
 - Knowledge:
 - What is my current knowledge state?
 - Can I solve this exercise?
 - Where do I have a gap?
 - Regulation Skills:
 - Planning
 - Monitoring
 - Evaluating
 - Strategies:
 - Help seeking
 - Self-explanation
 - Problem solving
Modeling Affective State

- Modeling a learner’s attitudes and feelings while they are learning.

- There is a complex interplay between cognition and affect in our brain
 - Emotions influence the way we learn

- What are important emotions related to learning?
 - frustration, anxiety, boredom, confusion

- How can the system recognize these emotions?
- What should be done, once the emotion is recognized?
Open Student Modeling

• Opening student model to a student increases:
 • Engagement
 • Reflection
 • Trust
 • System’s understanding of the student

• How to present/visualize the model?
• How much control should the student have?
• How much should the system trust the student?
Adaptive learning support
Model-tracing Tutors
Constraint-based Tutors

• Based on Ohlsson’s theory of learning from performance errors.
• Students detect errors with declarative knowledge and correct errors with procedural knowledge.
• CBM amplifies the process of error detection: it helps the student to find the errors they cannot find due to the missing declarative knowledge.
• It gives feedbacks according to the violation of constraints.
Adaptive Sequencing and Course Generation

The process of selecting learning activities from a digital repository and sequencing them in a way which is appropriate for an individual student.

- Goal: Best sequence of educational activities
- Information to read
- Example to explore
- Problem to solve
Adaptive Educational Hypermedia
Big Educational Data
<table>
<thead>
<tr>
<th></th>
<th>LA</th>
<th>EDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery</td>
<td>Supporting human making a discovery is key</td>
<td>Automated discovery is key</td>
</tr>
<tr>
<td>Reduction/holism</td>
<td>Stronger emphasis on integration information and understanding</td>
<td>Stronger emphasis on dissecting systems into component and analyzing each component separately</td>
</tr>
<tr>
<td></td>
<td>learning environment as whole</td>
<td></td>
</tr>
<tr>
<td>Supporting users</td>
<td>Focusing on informing and empowering learners and teachers</td>
<td>Focusing on automated adaptation of learning process</td>
</tr>
</tbody>
</table>
Learning analytics
EDM: Optimization of system behavior

- Is the adaptive educational system effective?
- How can it be improved?
 - Is the domain model precise enough? Are all important concepts identified?
 - Are learning tasks designed well? Are they modelled correctly?
 - Does the user modelling algorithm correctly estimate student knowledge? Does it predict their performance?
 - Is the pedagogical model effective? Does it make the right decisions at the right time? Do students follow its suggestions?
EDM: Detection of important events

- Within system events:
 - Off-task behavior
 - Misuse of system’s functions
 - Gaming the system
 - Important emotions
 - Moment of learning

- More global events:
 - Risk of dropping-out from a university
Social and collaborative learning
Peer-Review and Peer-tutoring

- Students form dyads with different roles of peers:
 - Tutor – tutee
 - Reviewer – reviewee
- There is an evidence that both roles are beneficial for learning
- Important for ill-defined domains

- Systems support this process through:
 - Teaching how to tutor/review;
 - Augmenting peer-tutoring with additional feedback;
 - Using wisdom of the crowds to optimize the results of review;
 - Matching peers.
Computer-supported Collaborative Learning

- In many learning scenarios, students work in teams/groups
- CSCL-systems try to:
 - Improve collaboration by:
 - Direct guidance
 - Regulating collaboration process
 - Raising awareness of the current state of collaboration
 - Use collaboration to facilitate more effective learning
 - By promoting social comparison and self-reflection
 - By utilizing team progress to support individual progress
Social adaptation for learning

- **Social Web**
 - Users are not consumers but provider of information
 - Web of people instead of web of pages
 - Social interaction, engaging interfaces
Advanced Interaction
Summary

- Systems and technologies that rely on particular type of HCI
- The research aspect of these systems is in their interfaces
- Some adaptive, some not

List of Topics:
- Tutorial Dialog Systems
- Pedagogical Agents
- Game-based learning
- Virtual and Augmented Reality Training Environments
Tutorial Dialog Systems

- NL-based interface is intuitive
- **Human tutoring:** learn through conversation

- Dialog can involve:
 - Asking questions
 - Answering questions
 - Giving feedback
 - Discussing a topic
 - Refinement of a statement
 - etc.

- Dialog can be:
 - text-based (usually is) or
 - verbal (technologies are improving)
Pedagogical Agents

• ... virtual characters
 • Learning/teaching is a social process => a systems needs a personality

• Benefits:
 • Increased motivation
 • Increased sense of comfort
 • Stimulation of essential learning behaviours
 • Enhanced flow of information and communication
 • ..

• Diversity:
 • virtual vs. robotic
 • animated vs. static
 • teaching vs. teachable
Games are characterized by:
- Fantasy
- Rules/Goals
- Sensory Stimuli
- Challenge
- Mystery
- Control
Augmented and Virtual Reality for e-Learning

- Virtual reality:
 - Immersive experience
 - Access to places and situations not available in reality
- Augmented reality:
 - Merging virtual and real worlds
More topics:

- Adaptive Assessment and Psychometrics
- Intelligent Programming Tutors
- Evaluation of Educational Systems
Even more topics...

- Modeling Groups and Communities for Learning
- Educational Recommender Systems
- Intelligent Support for Learning in MOOCs
- Informal and Exploratory Learning Support
- Mobile learning
- Ubiquitous learning environments
- ...